STOKES' THEOREM ON MANIFOLDS: A KURZWEIL-HENSTOCK APPROACH
نویسندگان
چکیده
منابع مشابه
Henstock–Kurzweil Fourier transforms
The Fourier transform is considered as a Henstock–Kurzweil integral. Sufficient conditions are given for the existence of the Fourier transform and necessary and sufficient conditions are given for it to be continuous. The Riemann–Lebesgue lemma fails: Henstock– Kurzweil Fourier transforms can have arbitrarily large point-wise growth. Convolution and inversion theorems are established. An appen...
متن کاملHenstock-Kurzweil Integral Transforms
Copyright q 2012 Salvador Sánchez-Perales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We show conditions for the existence, continuity, and differentiability of functions defined by ΓΓs ∞ −∞ ftgt, sdt, where f is a func...
متن کاملHenstock–Kurzweil delta and nabla integrals
We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.
متن کاملFundamental Theorem of Calculus and Computations on Some Special Henstock-Kurzweil Integrals
The constructive definition usually begins with a function f, then by the process of using Riemann sums and limits, we arrive the definition of the integral of f, ∫ b a f. On the other hand, a descriptive definition starts with a primitive F satisfying certain condition(s) such as F ′ = f and F is absolutely continuous if f is Lebesgue integrable, and F is generalized absolutely continuous if f...
متن کاملLaplace Transform Using the Henstock-kurzweil Integral
We consider the Laplace transform as a Henstock-Kurzweil integral. We give conditions for the existence, continuity and differentiability of the Laplace transform. A Riemann-Lebesgue Lemma is given, and it is proved that the Laplace transform of a convolution is the pointwise product of Laplace transforms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2013
ISSN: 1027-5487
DOI: 10.11650/tjm.17.2013.2701